分类目录归档:技术文献

使用OpenSSL库实现RSA、AES数据加密与解密

openssl是可以很方便加密解密的库,可以使用它来对需要在网络中传输的数据加密。可以使用非对称加密:公钥加密,私钥解密。openssl提供了对RSA的支持,但RSA存在计算效率低的问题,所以一般的做法是使用对称密钥加密数据,然后再把这个只在当前有效的临时生成的对称密钥用非对称密钥的公钥加密之后传递给目标方,目标方使用约定好的非对称密钥中的私钥解开,得到数据加密的密钥,再进行数据解密,得到数据,这种使用方式很常见,可以认为是对HTTPS的裁剪。对称密钥加密可以选择AES,比DES更优秀。
openssl库来自http://www.openssl.org/,下载到openssl源码之后,开始编译:
产生动态库的做法:
1、安装ActivePerl
2、进入OpenSSL所在文件夹,运行:perl Configure VC-WIN32 --prefix=C:\openssl-dll
3、进入VC/BIN目录,运行 VCVARS32.BAT 设置环境变量
4、返回OpenSSL目录,运行 ms\do_ms
5、在OpenSSL目录下执行编译 nmake -f ms\ntdll.mak
6、把必要生成物拷贝到prefix定义的目录中 nmake -f ms\ntdll.mak install
注意:可以通过修改ntdll.mak文件中的CFLAG,确定编译MT、MD库
产生静态库的做法:
1、安装ActivePerl
2、perl configure VC-WIN32 --prefix=C:\openssl-lib
3、ms\do_ms.bat
4、nmake -f ms\nt.mak
5、nmake -f ms\nt.mak install
注意:可以通过修改nt.mak文件中的CFLAG,确定编译MT、MD库。重编的时候把生成物删掉。
RSA加解密需要先用openssl工具生成RSA公钥和RSA私钥。方法:
1、产生私钥:openssl genrsa -out privkey.pem 1024;
2、根据私钥产生公钥:openssl rsa -in privkey.pem -pubout。
1024只是测试用,使用2048位才比较安全。
RSA加密部分代码demo:

RSA解密部分代码demo:

RSA的API中当使用参数RSA_PKCS1_PADDING时,明文长度不能大于密文长度-11;当使用参数RSA_NO_PADDING时,明文长度需要正好是128。
AES加密部分代码:

AES解密部分代码:

AES加密,块大小必须为128位(16字节),如果不是,则要补齐,密钥长度可以选择128位、192位、256位。

使用Linux vmfs-tools来挂载访问VMFS文件磁盘

1.首先要安装unbuntu系统,X86或者X64都可以,版本必须是9.10或者以上版本,这里使用10.04 X64版本,具体安装不作赘述,安装完毕后记得要安装编译包,如下
sudo apt-get install build-essential

2.安装vmfs-tools
sudo apt-get install vmfs-tools
若无法使用apt-get安装也可以直接下载源文件编译安装,下载地址是http://glandium.org/projects/vmfs-tools/
make&&make install 就行了

3.挂载vmfs文件格式硬盘
www@linux ~$ sudo fdisk -l
Disk /dev/sdb: 160.0 GB, 160041885696 bytes 255 heads, 63 sectors/track, 19457 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x49e2fd2f Device Boot Start End Blocks Id System
/dev/sdb1 * 1 140 1124518+ 83 Linux
/dev/sdb2 141 154 112455 fc VMware VMKCORE
/dev/sdb3 155 19457 155051347+ f W95 Ext'd (LBA)
/dev/sdb5 155 19457 155051316 fb VMware VMFS
此处/dev/sdb5就是 vmfs文件格式的分区
www@linux ~$ sudo vmfs-fuse /dev/sdb5 /opt/vmfs
此命令即可挂载vmfs分区到/opt/vmfs上面使用cp命令即可成功复制出里面的文件了。

4.若要想了解更多关于vmfs-tools的信息可以参考如下
www@linux ~$ sudo apt-get install open-vm-source
OR
www@linux ~$ sudo apt-get install open-vm-tools

Linux下C语言的调试

调试是每个程序员都会面临的问题. 如何提高程序员的调试效率, 更好更快地定位程序中的问题从而加快程序开发的进度, 是大家共同面对的问题. 可能Windows用户顺口就会说出:用VC呗 🙂 , 它提供了设置断点, 单步跟踪等的图形界面, 使调试起来直观易用. 但Linux用户可能要生闷气了 O:-) : 难道我们Linux程序员就只能使用原始的调试方法, 在代码中加入printf信息吗?难道Linux下就没有好的C语言调试工具吗?

当然不是了. GNU早就组织开发了一套C语言编译器(Gcc)和调试工具(Gdb). Gdb虽然没有图形化的友好界面, 但是它强大的功能也足以与微软的VC工具相媲美, 给Linux程序员带来了福音. 下面通过一个简单的例子, 演示一下Gdb的使用流程:

示例文件 demo.c 的源代码如下:

编译源文件, 生成可执行文件:

$ gcc -g -Wall -o demo demo.c
虽然这段程序没有错误, 但调试完全正确的程序可以更加了解Gdb的使用流程. 接下来就启动Gdb进行调试.

注意:

Gdb进行调试的是可执行文件, 而不是”.c”源文件, 因此, 需要先通过Gcc编译生成可执行文件才能用Gdb进行调试.
一定要加上选项”-g”, 这样编译出的可执行代码中才包含调试信息, 否则Gdb无法载入该可执行文件.
不能使用 -O2选项对可执行文件进行优化, 因为优化之后可执行文件里的符号表信息将被删除, 这样Gdb就无法找到使可执行文件与源文件之间的关联了, 也就不能调试了.

(1) 启动Gdb

$ gdb demo
GNU gdb (GDB) 7.0-debian
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/wangsheng/tmp/demo/gdb/demo...done.
可以看出, 在Gdb的启动画面中指出了Gdb的版本号, 使用的库文件等头信息, 接下来就进入了由”(gdb)”开头的命令行界面了.

(2) 查看源文件

在Gdb中键入”l”(list的缩写)可以查看所载入的文件, 如下所示:

(gdb) l
1 #include
2
3 int sum(int, int);
4
5 int
6 main()
7 {
8 int result;
9 int a = 1, b = 2;
10 result = sum(a, b);
(gdb) l
11 printf("%d + %d = %d\n", a, b, result);
12 return 0;
13 }
14
15 int
16 sum(int a, int b)
17 {
18 return a + b;
19 }
(gdb) l
Line number 20 out of range; demo.c has 19 lines.
可以看出, Gdb列出的源代码中明确地给出了对应的行号, 这样就可以大大地方便代码的定位.

(3) 设置断点

设置断点是调试程序中一个非常重要的手段, 它可以使程序到一定位置暂停运行. 因此,可以在该位置方便地查看变量的值, 堆栈情况等, 从而找出代码的症结所在.

在Gdb中设置断点非常简单, 只需在”b”后加入对应的行号即可(这是最常用的方式). 如下所示:

(gdb) b 9
Breakpoint 2 at 0x4004f4: file demo.c, line 9.
注意: 该断点的作用是当程序运行到第 9 行时暂停(第 8 行执行完毕, 第 9 行未执行)

(4) 查看断点信息

(gdb) info b
Num Type Disp Enb Address What
2 breakpoint keep y 0x00000000004004f4 in main at demo.c:9

(5) 运行代码

接下来就可运行代码了, Gdb默认从首行开始运行代码, 可键入”r”(run的缩写)即可. 若想从程序中指定的行开始运行, 可在r后面加上行号.

(gdb) r
Starting program: /home/wangsheng/tmp/demo/gdb/demo

Breakpoint 2, main () at demo.c:9
9 int a = 1, b = 2;
可以看到程序运行到断点处就停止了.

(6) 查看变量值

键入p(print的缩写)+变量名即可查看该变量在此时的值

(gdb) p a
$1 = 1
(gdb) p b
$2 = 2
(gdb) p result
$3 = 32767
注意: 这里之所以result是一个莫名其妙的值, 是因为声明result是没有初始化, 其值是不固定的。

(7) 单步执行

单步运行可以使用n(next的缩写)或者s(step的缩写), 它们之间的区别在于: 若有函数调用的时候, s会进入该函数而n不会. 因此, s就类似于VC等工具中的”step in”, n就类似于VC等工具中的”step over”.

如果使用n命令显示如下:

(gdb) n
10 result = sum(a, b);
下面使用 s 命令,跟踪进入 sum 函数:

(gdb) s
sum (a=1, b=2) at demo.c:18
18 return a + b;
可以看出执行 s 命令时进入了sum函数内部, 如果用 n 命令则跳过函数的调用部分

(8) 恢复程序运行

在查看变量值以及堆栈之后, 就可以使用命令c(continue)恢复程序的正常运行了. 这时, 它会把剩余还未执行的程序执行完, 并显示剩余程序的执行结果.

(gdb) c
Continuing.
1 + 2 = 3

Program exited normally.
可以看出, 程序在运行完后退出, 之后程序处于”停止状态”.
说明: 在Gdb中, 程序的运行状态有”运行”,”暂停”和”停止”3种. 其中”暂停”状态是程序遇到了断点或者观察点, 程序暂时停止运行, 而此时函数的地址, 函数参数, 函数内的局部变量都会被压入”栈(Stack)中. 故在这种状态下可以查看函数的变量值等各种属性. 但在函数处于”停止”状态之后, “栈”就会自动撤销, 它也就无法查看各种信息了

关于Gdb的更多命令, 你可以在启用Gdb后, 输入help命令查看.

树莓派 PCF8591 AD/DA

树莓派本身没有AD/DA功能,如果树莓派外接模拟传感器,则必须外接AD/DA功能扩展板才能用。Pioneer 600扩展带有AD/DA芯片PCF8591,pcf8591带1通道8位DA,4通道8位AD,通过I2C控制。

一、DAC
1、bcm2835程序

编译并执行
gcc –Wall pcf8591.c –o pcf8591 –lbcm2835
sudo ./ pcf8591

2、Python程序

执行程序
sudo python pcf8591
3、wiringPi程序

编译并执行程序
gcc –Wall pcf8591.c –o pcf8591 –lbcm2835 -lwiringPi
sudo ./ pcf8591
二、ADC
1、bcm2835程序

编译并执行
gcc –Wall pcf8591.c –o pcf8591 –lbcm2835
sudo ./ pcf8591
2、Python程序

执行程序
sudo python pcf8591
3、wiringPi程序

编译并执行程序
gcc –Wall pcf8591.c –o pcf8591 -lwiringPi
sudo ./ pcf8591

Linux中设置UEFI启动项 -- efibootmgr

usage: efibootmgr [options]
-a | --active sets bootnum active
-A | --inactive sets bootnum inactive
-b | --bootnum XXXX modify BootXXXX (hex)
-B | --delete-bootnum delete bootnum (hex)
-c | --create create new variable bootnum and add to bootorder
-C | --create-only create new variable bootnum and do not add to bootorder
-D | --remove-dups remove duplicate values from BootOrder
-d | --disk disk (defaults to /dev/sda) containing loader
-e | --edd [1|3|-1] force EDD 1.0 or 3.0 creation variables, or guess
-E | --device num EDD 1.0 device number (defaults to 0x80)
-g | --gpt force disk with invalid PMBR to be treated as GPT
-i | --iface name create a netboot entry for the named interface
-l | --loader name (defaults to \EFI\redhat\grub.efi)
-L | --label label Boot manager display label (defaults to "Linux")
-n | --bootnext XXXX set BootNext to XXXX (hex)
-N | --delete-bootnext delete BootNext
-o | --bootorder XXXX,YYYY,ZZZZ,... explicitly set BootOrder (hex)
-O | --delete-bootorder delete BootOrder
-p | --part part (defaults to 1) containing loader
-q | --quiet be quiet
-t | --timeout seconds set boot manager timeout waiting for user input.
-T | --delete-timeout delete Timeout.
-u | --unicode | --UCS-2 pass extra args as UCS-2 (default is ASCII)
-v | --verbose print additional information
-V | --version return version and exit
-w | --write-signature write unique sig to MBR if needed
-@ | --append-binary-args file append extra args from file (use "-" for stdin)
-h | --help show help/usage